145

A computer program for generating diagnostic keys

R. J. Pankhurst

University Engineering Laboratory, Trumpington Street, Cambridge

Diagnostic keys are widely used in biology for the identification of specimens, but the technique
is applicable to recognition processes in general. A key is constructed from a matrix which
describes the properties of a set of objects. It is usually possible to contrive a large number of
different keys for one set of objects, although the keys will not be equally useful. The construction
and editing of keys by hand requires much labour, and a FORTRAN program is described here to
do this automatically. The algorithm explores all the possible keys in a tree-searching process,
and selects an optimal key heuristically. A special purpose data structure is used to represent

the key in computer memory.
(Received July 1969)

Diagnostic keys are used for identifying an individual
object out of a set of objects which resemble one another.
They are principally used by biologists, although the
problems involved are of a very general nature which
form part of the study of classification or taxonomy.
Two complementary problems occur in taxonomy.
These are:

(a) Given a set of objects, examine their characteristics
in order to find a classification, i.e. group the
objects into subsets, and assign names to the
subsets.

(b) Given a classification and an object, identify that
object, i.e. given a list of the characteristics of
named subsets which are known to exist and an
additional object, decide which subset the object
belongs to (recognise it, or find its name).

Keys are used for the second type of problem, once a
case of the first type has been solved. In other words,
assuming a classification, a key is used to do an identi-
fication. Keys could be used in cases such as medical
diagnosis, analysis of personality by psychologists, or
fault tracing in motor car engines. Keys have the
greatest usefulness when the objects to be distinguished
resemble one another closely, and when the user is
unfamiliar with the objects. Keys have been used
historically since at least the eighteenth century (Voss,
1952).

An example of a key is given in Fig. 1. The objects
(birds) concerned were chosen for their familiarity rather
than as an illustration of where a key might be useful.
Suppose one has seen a bird which is presumed to be
one of these five. Start at label 1 of the key. If the bird
could fly, go to label 2, otherwise to label 4. At label 2,
if it was a water bird, we know that it was a duck, other-
wise go to label 3 to distinguish between a sparrow and
an eagle. At this point, the identification should be
checked by careful comparison with a detailed descrip-
tion, or with a photograph, or if necessary, by asking an

The Computer Journal Volume 13 Number 2 May 1970

expert. There is still the possibility that the object
examined was not included in the key anyway. This
shows up as an unlikely result or as poor agreement with
the description, in which case a different key might give
the right answer.

1 Bird flies 2
Bird cannot fly 4

2 Lives by water Duck
Lives elsewhere 3

3 Less than 30 cm long Sparrow
More than 30 cm long Eagle

4 Lives by water Penguin
Lives elsewhere Chicken

Fig. 1. Key for birds

The information from which the key of Fig. 1 was
derived is shown in Table 1. Each object (species, taxon
or concept) is described by a set of pairs of characters
(attributes, features or properties) with values (or states).
For example, the object ‘duck’ is represented by (flies,
yes), (lives by water, yes), (length, about 30 cm), (bill,
flat and spoon-shaped), (talons, none). For example,
the character ‘flies’ has the value ‘yes’. Characters may
be binary- or multi-valued. Binary valued characters
have only two values, such as (0, 1) or (yes, no) or
(present, absent). Multi-valued characters take on more
than two values, but can always be reduced to a set of
binary valued characters if desired. For example, the
values under the character ‘bill’ in Table 1 can be split
into (curved, not curved), (flat, not flat), etc. The values
of a character to be used in a key have to be mutually
exclusive, a point which is sometimes overlooked.

The values of characters as considered here are, in
general, alphanumeric strings of arbitrary length. A
special case is when the value is unknown or missing.
Values can be missing because they are simply in-
appropriate, e.g. in botany, no value can be given for

GTOZ ‘77 9uUnf Uo S 81ninsul [20160(007 1 /610°s feuano [pJo xo" ju fwod//:dny wouy pspeo umoq


http://comjnl.oxfordjournals.org/

146 R. J. Pankhurst

‘shape of teeth on leaf’ for a plant which has no teeth
on its leaves. A value can be missing because that
character on a given object is too variable to be useful,
or because the author of the original classification did
not make a complete record. The convention in biology
is to call a missing value ‘not coded’, abbreviated as NC
(Sokal and Sneath, 1963).

Table 1

Classification of birds

% FLIES LVI:,/:,?,E}:{Y LENGTH BILL TALONS
duck yes yes 30cm flatand no
spoon-
shaped
penguin no yes 30 cm triangular no
eagle yes no 100 cm curved yes
chicken no no 30cm straight, no
narrow
sparrow yes no 10 cm triangular no

Some characters have proved more useful for the
identification of objects than others. As an example,
with a plant it is easier to find the colour of a flower than
to examine leaf cells. This is a subjective distinction;
whether or no such characters differ in their objective
importance for classifying objects (species) has been a
controversial matter in biology for several centuries. A
more useful character may be said to have a lower
‘cost’. The cost is usually not measurable in economic
terms, except for chemical tests used in medicine or
microbiology, so it is usually expressed as a scheme of
character weights. The weights do not have measurable
numerical values in biology, but are just indicated by
printing the more useful characters in italics. When
characters are variable, the different values can be
assigned different probabilities of occurrence. Again, in
biological cases, these probabilities are not often
measured, since they are not constant. For this reason,
constant characters are strongly preferred.

The probability with which an object of each type
may occur can also be considered. The correct identi-
fication of a rarity is not a common event. With bio-
logical species, numerical measures of the relative
abundance of species are not usually available. For
medical diagnosis, however, records of the incidence
rates of different diseases have been kept.

A diagnostic key may also be thought of as a decision
table or tree. The key of Fig. 1 is represented as a tree
in Fig. 2. This example key is dichotomous, i.e. every
node has at most two branches. Each node corresponds
to a labelled question, and the twigs all end with the
name of an object. Keys with more than two branches
at a node (polychotomous keys) can exist. Keys are
often referred to as artificial keys, with the implication
that a natural key might exist. A natural key, if it can
be found, is presumed to reflect an inherent structure in
the objects concerned, with the most important dis-
tinguishing characters appearing first. The keys
generated by the program considered here are artificial,
since they are produced by considerations of convenience
rather than naturalness.

Different forms of artificial key are possible. The two

common forms are known as the bracketed or parallel
type and the indented type, although these terms are not
very helpful. The first type of key is as in Fig. 1. The
alternative questions that are possible at a node at a
given level (as in Fig. 2) are written together. In the
second type of key, as in Fig. 3, the questions at a given
node are set apart while the dependent alternatives are
explored in between. In terms of the tree of Fig. 2, the
first type corresponds to tracing out the tree from left
to right first and then from the top to the bottom,
whereas the second type corresponds to tracing out the
tree from top to bottom first and then from left to right.
The indentation shown in Fig. 3 can be used in either
type of key and it reflects the level of a node within the
tree. The lower the level of a node the further the
question is displaced to the right as the key is written out.

LEVEL O

LEVEL 1

PENGUIN

CHICKEN

DUCK 3 (<30Cwm
Y N

LEVEL 3

SPARROW EAGLE

Fig. 2. Tree version of simple key

Dichotomous keys are often preferred to polychoto-
mous keys because it is easier to choose between two
alternatives than between many. Combinations of
characters may be used in the questions posed, e.g. the
questions labelled 3 in Fig. 3, but since correlations
between characters may not always occur, single
characters appear most frequently. It requires less
mental effort to answer a question of the form ‘Is A
true?” than the more complicated form ‘Is A true and
B true and . . . 7 The shortest possible key gives the
fastest identification, provided that the character values
are equally easy to recognise, and it has been shown that
the shortest key is obtained when the tree is dichotomous
and the objects are divided into equal sized groups at
each node (Osborne, 1963). Hence a key offers the
advantage of being the fastest method of identification.
It has certain disadvantages: (i) some of the characters
used in the key may not be available on the object;
(ii) the values of the characters used may not be easy to
observe for subjective reasons. One author (Leenhouts,
1966) has proposed that one should not use a key at all,
but work from a synopsis, i.e. a summary of the classi-
fication as in Table 1. The user is then free to use what
characters he pleases, but he has to make considerably
more effort since no help is given in the process of
comparison. No allowance has been made in the above
discussion for the fact that the values of characters might
be variable. Evidently a set of objects must have at
least some constant properties for the original classi-

STOZ ‘P 8uUnf U S 8Iniisul [eo160|00Z e /6.0°S[euunopJo jxo- jufwooy/:dny woly papeoumod


http://comjnl.oxfordjournals.org/

Key generating program 147

1 STEM 0-10 CM. 2
2 STERILE ROSETTES ABSENT, CAPITULA MORE THAN 3 CM, 17.J.FONTQUERL
2 STERILE ROSETTES PRESENT, CAPITULA UP TO 3 CM, . 3

3 CAPITULA OBCONICAL, INVOLUCRAL BRACTS LAX,PATENT OR RECURVED, 15.J .HUMILIS
3 CAPITULA SUBGLOBOSE, INVOLUCRAL' BRACTS APPRESSED, 16.J.TAYGETEA

1 STEM MORE THAN 10 CM. 4
4 PAPPUS SHORTER THAN ACHENE. 11.J.POLYCLONOS
4 PAPPUS LONGER THAN ACHENE. 5

5 INVOLUCRAL BRACTS LAX,PATENT OR RECURVED. 6
6 CAPITULA MORE THAN 3 CM. 7
7 STEM LEAFY THROUGHOUT. 10B.J.MOLLIS.SSP.MOSCHATA
7 STEM LEAFY AT BASE.’ 8
8 INVOLUCRAL BRACTS LANCEOLATE. 10.J.MOLLIS
8 INVOLUCRAL BRACTS LINEAR. 14.J .GLYCACANTHA
6 CAPITULA UP TO 3 CM. 9
9 STEM WOODY AT BASE. 6.J.ALBICAULIS
9 STEM HERBACEOUS. 10
10 BASAL LEAVES SUBGLABROUS ABOVE, TOMENTOSE BENEATH. 9.J.EVERSMANIT
10 BASAL LEAVES PUBERULENT ABOVE, TOMENTOSE BENEATH, 12.J .LEDEBOURI
5 INVOLUCRAL BRACTS APPRESSED. 11
11 BASAL LEAVES SUBGLABROUS ABOVE, TOMENTOSE BENEATH. 12
12 DISTAL CROWN OF ACHENE INCONSPICUOUS. 13
13 CAPITULA SUBGLOBOSE. 8.J.CYANOIDES
13 CAPITULA HEMISPHERICAL. 13,J.CONSANGUINEA
12 DISTAL CROWN OF ACHENE CONSPICUOUS 14
14 RHIZOME ABSENT. 2.J.STOECHADIFOLIA
14 RHIZOME PRESENT. - 3.J.TZAR-FERDINANDL
11 BASAL LEAVES ARACHNOID TOMENTOSE. 15
15 STERILE ROSETTES PRESENT. 16
16 BASAL LEAVES PINNATIFID, CAPITULA OBCONICAL. 4,J .PINNATA
16 BASAL LEAVES ENTIRE, CAPITULA HEMISPHERICAL. 7.J . KIRGHISORUM
15 STERILE ROSETTES ABSENT. 17
17 STEM WOODY AT BASE, BASAL LEAVES ENTIRE. 1.J.LINEARIFOLIA
17 STEM HERBACEOUS, BASAL LEAVES PINNATIFID, 5.J.TANAITICA

Fig. 3.
A computer generated key

fication to be possible at all. However, when variation
is present an identification process should lead to the
name of the object with the highest probability of being
correct.

Keys and computing

A better method of using a computer for identification
of biological specimens is to do this on-line. Goodall
{1968) has described a system for on-line recognition of
botanical specimens. This is based upon a question and
answer procedure. The user first gives the name of the
group of objects (genus) to which he thinks his object
(plant) belongs. The system gives out a list of the
characters which are available, and the user chooses one
and selects a value for it. The system then proposes a
new choice, and this is repeated until the object is
identified. The procedure is like that involved in using
a key, except that the user is completely free to choose
which of the available questions he will answer at each
stage. This is one special case of the many computer
systems used for recognition problems. It has the
advantages of giving the most freedom for subjective
preference and being very easy to use. Unfortunately,
it is the more expensive method, and cannot be used in
the field or if there is no means of access to the computer.
For these reasons, printed keys will very likely continue
to be useful for some time.

The traditional key used by biologists is often only
available for more or less familiar objects (species), and
a worker who wants to specialise may often have to
manage without. The effort required in inventing a key
from scratch by hand is considerable, which is why keys
are often not available. Further, practical experience
with a hand-produced key will often show up the need
for revisions, so that the labour has to be repeated.
Lastly, yet more effort is needed in order to produce a
best key (in some sense), out of the many keys that are
usually possible, so keys are not usually optimised at all.
These are the reasons for wishing to generate keys by
computer. Morse, Beaman and Shetler (1968) state
plainly the need for the development of key generation
programs as a part of the Flora North America project.

Some previous work has been done in this direction
by biologists. Moller (1962) gives a statistical theory for

allowing for the observed statistical variation in some of
the characters of objects, in order to choose a key which
gives the maximum probability of correct identification.
Binary state characters only are used, of which no
characters may have missing values. Computing is used
only for the statistical calculations, and not for producing
the printed key.

Morse and his co-workers describe two similar
computer programs for editing existing keys (Morse,
Beaman and Shetler, 1968) and (Morse, 1968). The
principle used is that the tree structure of the key and
the questions or statements that appear in the printed
form can be described separately. The user specifies a
different tree and the system edits the statements and
prints them in a different order to get a new key. Either
of the two types of key can be selected.

Niemela, Hopkins and Quadling (1968) describe a
system for choosing a key (for microbes). The matrix
of species versus character values has to be complete,
i.e. no missing values are allowed, and the characters
must be binary valued (+1). The final key is produced
only in numerical form, so that the work of writing out
the key remains, and only dichotomous keys can be
produced, since characters are considered only one at
a time at each node. Characters can be selected or
ignored, but selective weighting of characters is not
included. Tests are made to detect redundant characters,
i.e. characters must have more than one value amongst
the species considered. Two means of selecting a
character for making a further division at a node of the
key were tested. (i) Summing each set of character
values for all species. Since +1 are used as values, the
character which divides the set of species most nearly
into two equal groups will give the summed value nearest
zero. (il) Minimising the theoretical number of different
keys which could result from further subdivisions from
a given node. This amounts to minimising the logarithm
of the number of combinations, which is a function of
factorials.

Morse (1969) has developed his earlier work into a key
constructing program which also prints the key.
Character value pairs are treated as inseparable couplets,
which is an unusual approach. The couplets can only
represent two different values for a character, and only
one couplet can be considered for use in each question.
Missing values are allowed for. Couplets are selected
according to whichever divides the objects into two
groups of most nearly the same size.

Artificial intelligence work has also been concerned
with the construction of decision trees, equivalent to
keys, although the application of this to biology appears
to have been overlooked. In the following discussion,
each of the projects mentioned has been concerned with
only dichotomous trees using only binary valued
characters. The use of more than one character per
test (question or lead) has not been considered, and the
effect of missing values has been neglected. In each
case, the techniques for storage and manipulation of
the decision tree in the computer are similar to those
used by the key program.

Hunt, Marin and Stone (1966) describe experiments in
both computing and psychology concerned with what
they call concept learning. Data concerning objects is
available, and is arranged in the familiar character-value
matrix. One of the character values of the objects shows

STOZ ‘P 8uUnf U S 8Iniisul [eo160|00Z e /6.0°S[euunopJo jxo- jufwooy/:dny woly papeoumod


http://comjnl.oxfordjournals.org/

148 R. J. Pankhurst

whether or no the object is a case of a known pheno-
menon or concept. For example, hospital patients either
suffered infection in surgical wounds or did not. The
concept is ‘risk of infection’ which needs to be identified.
The objects are the patients, and the characters and
values are a set of clinical tests and their results. Each
object is known to coincide with the concept (a positive
instance) or not (a negative instance). The decision tree
gives only two possible results, true or false, correspond-
ing to risk of infection or otherwise in the example.
The decision tree is therefore concerned to detect
positive instances as soon as possible, whereas a bio-
logical key tries to distinguish any one object from many
others with equal efficiency. Further, there is nothing
corresponding to the concept to be recognised in the key
problem.

Slagle (1964) assumes that a decision tree has been
given, together with the cost and probability of successful
outcome of each test, and shows how to rearrange the
tree to minimise the average cost. The same set of tests
is retained in each case. The tests are re-arranged in
the order of ascending ratio of the cost to the prob-
ability. This is an interesting extension to the key
problem, but unfortunately the costs and probabilities
are not in general available in the applications for which
the key program was needed.

Winston (1969) also typifies objects with a character-
value matrix, and he takes the cost of a test into account
with the probability of the object occurring, but not the
probability of the testing. Possible ways of branching
the tree are compared by minimising a function of the
cost and probability, so as to choose the cheapest test
and at the same time divide the group of objects into
two groups each with nearly equal probability of occur-
rence. Methods of rearranging the tree by considering
simultaneously more than one consecutive branch are
discussed and are shown to improve the tree. It is
suggested that more sophisticated rearrangement algor-
ithms could be prohibitively expensive in computer time
and give only slightly better trees.

Desirable features of a key

This is a subjective matter. Metcalf (1954) gives an
account of his preferences with a very amusing example
key for an imaginary genus Paradoxus. The following
criteria are suggested:

(i) Common objects should be reached in the key by
the shortest path. Also highly distinctive objects
should key out quickly.

(ii) Dichotomous keys are preferred to polychoto-
mous keys since it is easier to choose between two
rather than many alternatives. Similarly each
question in the key should not involve too many
characters, since this makes the question harder
to answer. However, in cases where an object
can only be distinguished by having a certain
combination of character values the use of many
characters at once may be essential.

(iii) Care is needed in the use of characters which are
known to be variable, because they cause un-
certainty in identification. One way to avoid the
problem is to add extra objects (with perhaps the
same name) with different character values to
cover the range of variation. If sufficient

constant characters are available, the variable
characters can be ignored.

(iv) The key should be ordered according to sub-
jective considerations of convenience, and not
according to the classification which lies behind
it, since this ordering may be different. For
example, plants are classified by their flower
structure, whereas keys for identifying them can
take advantage of simple obvious properties like
flower colour. If the availability of the characters
of the object varies, as for instance biological
species present different features at different
seasons, then a variety of differently ordered keys
should be available.

(v) Where the use of the second type of key is
concerned, it is best to put the shortest sub-tree
from a node first, so that it is easier to cast
forward for the alternative questions at this level.

(vi) It is a help to be able to trace the key backwards
if an error is suspected. This can be done easily
with the second type of key owing to the structure;
with the first type of key backward pointers
(question numbers) would have to be added.

(vii) A key may not need to use all the characters of
an object to give an answer. When the object
keys out, it is useful to have all the remaining
distinctive characters printed at that key branch,
since there is always a finite possibility that the
specimen does not fit the key at all, and this acts
as a check. A distinctive character in this
context is any character whose value for the
identified object is different from the values of
the same character for all the other objects
belonging to other branches from the same node
of the key.

Features of the key program

The program produces keys which cover most of the
possible requirements listed above. Its facilities are:

(i) Program accepts any of the possible strings of
characters from the FORTRAN set as an object,
character or value.

(ii) The characters can be binary or multi-state as
required. Correspondingly, dichotomous or
polychotomous keys are likely to be produced.

(iii) Characters can be given numerical weights to
reflect the users’s preferences.

(iv) Either type of key can be produced, both with or
without indentation.

(v) Unusual species are keyed out first wherever
possible.

(vi) The maximum number of characters to be used
in questions may be specified.

(vi)) Unknown or missing character values are
allowed for throughout.

(viii) Detects redundant characters and gives error
messages if no key can be determined.

(ix) Program will print out the object-character
value matrix (synopsis) in a readable form.

(x) When an object keys out, all the remaining dis-
tinctive characters for that object are included.

(xi) The program prints the final key in a form which
is ready for use, except that a little editing might
be needed to improve the literary style.

STOZ ‘P 8uUnf U S 8Iniisul [eo160|00Z e /6.0°S[euunopJo jxo- jufwooy/:dny woly papeoumod


http://comjnl.oxfordjournals.org/

Key generating program 149

Data preparation

There is good reason to try and use an object-
character matrix which is as complete as possible. A
matrix with too few characters, even if complete, may
be insufficient to produce a key. A matrix with an
adequate number of characters may still not be sufficient
for a key if too many of the values are missing. The
initial requirement is that at least one character should
have a complete set of values.

The user assigns a positive numerical index to the
string which represents each character, and similarly for
the values. A zero index is used for missing values.
The program internally assigns an index to each object.
The character weights are positive integers. The largest
weight is given the most importance. Some attention
has to be paid to the question of style when using
characters and values. Suppose character 23 represents
flower colour, when a key for flowering plants is being
produced. Then if FLOWER COLOUR is the string
used for character 23 and in one case it has value 15,
which is RED, then the phrase FLOWER COLOUR
RED might appear in the key. In such a case it is better
to write the string for character 23 as FLOWERS so
that FLOWERS RED results.

The user should beware of using ‘or’ in the values of
characters. It is possible to say of a number of species
of animal for example, ‘fur brown or grey’. This is true
of a group of different objects but is not necessarily true
of the individuals within it. ‘Fur brown or grey’ could
appear in the key where a particular animal keys out
when the animal only ever has brown fur. Thus,
although the key works correctly, it could give a false
impression of the characters of an object.

Experience with preparing data from descriptions of
biological species shows that when the original data
specifying the classification is not presented entirely
systematically then much effort has to be spent on trying
to complete the matrix. This situation arises because
the traditional classification methods of biologists are
partly subjective, so that the manner in which descrip-
tions of species have been set out has not been specially
rigorous. The characters to be used by the key program
have to be selected from the written descriptions of the
species, and this may have to be an iterative process.
The best procedure seems to be to make up a chart of
the species and their characters and to assign indices to
the characters and values last of all.

Key generating algorithm

A simplified flow diagram of the algorithm is given in
Fig. 4. The process as a whole may be described as one
algorithm which generates another. The algorithm
generated is the key itself, and this is a recognition pro-
cedure which is optimal in some sense and therefore
efficient. The key generating algorithm chooses heur-
istically between possible ways of branching a key by
using a comparison function.

Initially, all the objects and characters can be con-
sidered. The objects can be divided into groups by
considering the values of the characters, supposing first
of all that the characters are all equally weighted. Only
those characters which have no missing values within the
current set of objects can be used. Suppose one
character is selected and it has two different values.

This will then divide the objects into two groups. Two
or more characters could be selected and these with their
values can be used to group the objects, usually giving a
higher number of groups. The maximum number of
characters that can be considered is always known. The
selection of subsets is achieved by an algorithm that
generates all the possibilities in turn. For example, out
of a maximum of six characters one might want all sub-
sets of size three. There are then 6C; = 20 different sets,
such as 123, 124, 125, 126, 134, 135, 136, etc. Hence,
all the possible trees can be enumerated.

Subsequently, at later nodes of the key, some of the
characters will have already been used and also some of
the objects may have been eliminated. Hence, only a
sub-matrix of objects and characters has to be con-
sidered. If the characters are weighted differently, then
the highest weighting among the available characters is
found, and only the characters with this weighting are

READ AND
CHECK DATA
CONSIDER ALL OBJECTS
AND CHARACTERS

CHOOSE CHARACTERS
WITH HIGHEST WEIGHT

Y y
ANY UNUSUAL _
OBJECTS? >

Y N

LOOP FOR ALL
CHARACTER SUBSETS

GROUP OBJECTS USING
THESE CHARACTERS

EVALUATE THIS
A GROUPING 4

Y N
IS THIS A BETTER
WAY TO BRANCH THE KEY?

Y Y
STORE NEW KEY BRANCHES

)

REPEAT

1

ADD NEW BRANCHES
TO TREE

TRY TO CHOOSE A SUB-MATRIX

OF OBJECTS AND CHARACTERS
FROM TREE OF KEY SO FAR

SUCCESS?

PRINT KEY

Fig. 4. Flow diagram of key generating program

STOZ ‘v9Ung U0 S 81niiisul [e9160(00Z Te /610 [euuno [pioxo- jufwioo//:dny wo.y pepeojumod


http://comjnl.oxfordjournals.org/

150 R. J. Pankhurst

used to generate new key branches. If these characters
turn out to be redundant, in that their values are all
identical or missing amongst the relevant subset of
objects, then the characters with the next highest weight-
ing are considered instead. This is repeated until some
useful character is found. When characters are con-
sidered in combinations, only sets of characters with
equal weighting are chosen.

The comparison function F was chosen to have the
following properties. The function has a minimum value
of zero when (i) it divides a group of objects into two,
and (ii) the sizes of the sub-groups of objects so divided
are equal. Suppose N objects are divided into K sub-
groups with n; objects in each sub-group, where
i=1,2,... K. Many suitable functions exist, and the
following simple function is used and has, so far, been
quite satisfactory:

F - Fl —|— F2
where
_ ) . nK
Fi=K—2%F, —i=ZI,K N

The ideal case is clearly K = 2, n; = n, = N/2, then
F = 0. F, increases rapidly for K > 3. F, also tends
to increase for larger K, as well as being larger when the
sub-groups are unequal. The function F has another
useful property. Suppose a number of possible ways of
grouping the objects with the characters have already
been attempted, giving a minimum F value of F,;, . K.
can be calculated from F; such that K,,,,, is the smallest
possible value of K which gives an F > F,,;,. In other
words, for a given F,,;,, all ways of dividing the objects
which give K, or more sub-groups of objects can be
rejected, since they cannot give a better value for F,;,.
The key program enumerates the sub-groups by con-
sidering first one character and the corresponding sub-
groups, and then two characters, and so forth. There
is then a high probability that the best arrangement will
be found almost at once, and then the remaining possi-
bilities can be quickly rejected. The key program does
not attempt to optimise the key over more than one
question or test at a time.

The data structure used to store the key as it is built
is basically a simple list structure which corresponds to
the tree of the key. Each node of the tree is represented
by two blocks of storage of variable size linked together.
At later stages of the key generating process extra
pointers are added to the structure in order to represent
the question labels before and after the question, and
then the structure is no longer a simple list structure,
since there may be more than one way of reaching a
node from the root of the tree.

A pushdown stack is used in the process of selecting
a new sub-matrix of objects and characters when new
branches are added to a node. The index of the stack
is the level of the node in the tree. The stack index is
also used to indent the key when it is printed out by
moving the questions to the right by the number of
spaces given by the index. The sub-matrix is found by
taking the table of objects which is stored in the data
structure for the node, and by eliminating all characters
which are used in the path between the root of the tree
and the current node. The two types of key are
obtained by a simple process of reordering the list
structure. An exception to this occurs with keys of the

1 —

second type, where it is desired to have the smallest
group first. In this case the branches from a node are
put in ascending order according to the number of
objects in each group.

The detection of unusual objects is carried out by a
simple and crude classification technique. Many more
refined numerical techniques of taxonomy exist (Sokal
and Sneath, 1963) but their use was not thought appro-
priate here. No attempt to detect an unusual object is
made if any of the values of the available characters are
missing, since the comparison technique requires an
equal number of characters for each object. Each
object is compared with every other object and a count
is made of the number of characters which correspond.
This count when averaged out gives an ‘average likeness’.
On the assumption (unjustified) that the ‘likeness’ values
have a uniform distribution, a variance is calculated.
Any object whose ‘likeness’ differs from the average by
more than the heuristically derived standard deviation is
said to be unusual. Unusual objects are then keyed out
immediately without the usual tree searching process.

The whole algorithm has been written in ASA
FORTRAN, for the sake of potential users outside the
computer centre of origin. FORTRAN was unsuitable
for writing the key generating algorithm in the following
respects:

(i) the handling of alphanumeric input/output data is
very clumsy;

(i) a considerable amount of storage is wasted in
implementing the dynamic storage allocation
scheme for the list structure using FORTRAN
arrays. This type of programming is usually
carried out using absolute addresses as pointers,
whereas within FORTRAN an array index has to
be used instead.

The LEAP language and data structure (Feldman and
Rovner, 1969) might have been more suitable for pro-
gramming the key program, had it been available.
LEAP is an ALGOL-type language with a data structure
which stores relationships of the form ‘Attribute of
Object is Value’, abbreviated as Attribute (Object) =
Value. This is precisely the same form as the description
of objects in terms of the values of the characters
(attributes) as used by the key program. As in the
earlier example, the ability of a duck to fly could be
expressed as:

Ability to fly (Duck) = Yes.

Performance

The computing time taken depends principally on the
number of objects, the number of characters, and the
maximum number of characters allowed per question.
Both the following examples of timing are given for a
maximum number of characters per question of two.
The key reproduced in Fig. 3 took about two minutes
on the Cambridge University TITAN computer (two
microsecond cycle time) for 29 characters and 18 objects.
A key for 32 characters and 140 objects took about
seven minutes. The FORTRAN program, not including
storage space, occupies 16K words. 3K words of
storage were sufficient for working space and storage of
the complete key for a matrix of about 30 by 30. The
program runs noticeably faster with the use of unequal

STOZ ‘P 8uUnf U S 8Iniisul [eo160|00Z e /6.0°S[euunopJo jxo- jufwooy/:dny woly papeoumod


http://comjnl.oxfordjournals.org/

Key generating program 151

character weighting, and when there are missing
character values, since both these cases reduce the
number of alternative keys to be considered.

At the present time, the program has been distributed
to a number of users, of whom only a few have so far
given their reaction. However, two notable successes
can be claimed. In the first case, the author was
challenged to reproduce by program a key in the Flora
Europaea (Tutin, Heywood, Burges, Moore, Valentine,
Walters and Webb, 1968). The key was for the European
Genera of the Umbelliferae (carrot family) and involves
134 distinct objects. The resulting key had 209, fewer
leads than the hand-made original, the leads were more
compact and fewer characters were used.

A second successful application has been to produce a
key for 86 cultivated varieties of potato with data
provided by Mr. T. Webster of the National Institute
for Agricultural Botany. No key had previously been
available for the potatoes, since the task of constructing
one by hand had proved daunting. The computer
generated key provides the first systematic identification
scheme to become available in this case.

References

Conclusions

The key generating program should prove very useful
to biologists, geologists and others. The amount of
effort required to set out the original data matrix
remains, but once this is obtained, key revision is very
easy when new objects or characters or a new weighting
of the relative importance of characters is required.
There is also reason to think that the key obtained is
likely to be the best possible, rather than just any key.
The user of this program should be able to obtain a
greater variety and quality of keys than before. The
principal effort that remains is in data preparation.

Acknowledgements

Thanks are due to Dr. S. M. Walters of the Herbarium
of the Botany School at Cambridge for making practical
suggestions on the design objectives of the program, to
L. E. Morse for correspondence on his own work, and
to the referee for bringing some of the artificial intelli-
gence research to the author’s notice.

FELDMAN, J. A., and ROVNER, P. D. (1969). An ALGOL-based associative language, CACM, Vol. 12, No. 8, pp. 439-449.
GoopALL, D. W. (1968). Identification by computer, Bioscience, Vol. 18, pp. 485-488.

Hunr, E. B., MARIN. J., and STONE, P. J. (1966). Experiments in induction, Academic Press: New York and London.
Leennouts, P. W. (1966). Keys in biology, Proceedings, Koninklijke (Nederlandsche) Akademie van Wetenschappen, Vol. 69C,

pp. 571-596.

METCALF, Z. P. (1954). The construction of keys, Systematic Zoology, Vol. 3, pp. 38-45.
MoLLER, F. (1962). Quantitative methods in the systematics of the Actinomycetales. 1V. The theory and application of a
probabilistic identification key, Giornale Microbiologica, Vol. 10, pp. 29-47.

Moxssg, L. E., BEAMAN, J. H., and SHETLER, S. G. (1968).
America, Taxon, Vol. 17 (5), pp. 479-483.

A computer system for editing diagnostic keys for Flora North

Morsk, L. E. (1968). Abstract, Construction of identification keys by computer, American Journal of Botany, Vol. 55, p. 737.

Morsg, L. E. (1969). Private communication.
NIEMELA, S. I., Hopkins, J. W., and QUADLING, C. (1968).

Selecting an economical binary test battery for a set of microbial

cultures, Canadian Journal of Microbiology, Vol. 14, pp. 271-279.
OsBORNE, D. V. (1963). Some aspects of the theory of dichotomous keys, New Phytologist, Vol. 62, pp. 144-160.
SLAGLE, J. R. (1964). An efficient algorithm for finding certain minimum-cost procedures for making binary decisions, JACM,

Vol. 11, pp. 253-264.

SokAL, R. S., and SNeaTH, P. H. A. (1963). Principles of numerical taxonomy, W. H. Freeman & Co., San Francisco and
London.

TuriN, T. G., HEywoop, V. H., BURGES, N. A., MCORE, D. M., VALENTINE, D. H., WALTERs, S. M., and WeBB, D. A. (Editors)
(1968). Flora Europaea, Vol. 2, Cambridge University Press.

Voss, E. G. (1952). The history of keys and phylogenetic trees in systematic biology, Journal of the Science Laboratory of Denison
University, Vol. 43, pp. 1-25.

WINSTON, P. (1969). A heuristic program that constructs decision trees, Artificial Intelligence Memorandum No. 173, Project
MAC, M.I.T.

STOZ ‘P 8uUnf U S 8Iniisul [eo160|00Z e /6.0°S[euunopJo jxo- jufwooy/:dny woly papeoumod


http://comjnl.oxfordjournals.org/

